Unify get_samples() semantics for AnalogSegment and LogicSegment
[pulseview.git] / pv / data / logicsegment.cpp
1 /*
2  * This file is part of the PulseView project.
3  *
4  * Copyright (C) 2012 Joel Holdsworth <joel@airwebreathe.org.uk>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include <extdef.h>
21
22 #include <assert.h>
23 #include <string.h>
24 #include <stdlib.h>
25 #include <cmath>
26
27 #include "logicsegment.hpp"
28
29 #include <libsigrokcxx/libsigrokcxx.hpp>
30
31 using std::lock_guard;
32 using std::recursive_mutex;
33 using std::max;
34 using std::min;
35 using std::pair;
36 using std::shared_ptr;
37
38 using sigrok::Logic;
39
40 namespace pv {
41 namespace data {
42
43 const int LogicSegment::MipMapScalePower = 4;
44 const int LogicSegment::MipMapScaleFactor = 1 << MipMapScalePower;
45 const float LogicSegment::LogMipMapScaleFactor = logf(MipMapScaleFactor);
46 const uint64_t LogicSegment::MipMapDataUnit = 64*1024;  // bytes
47
48 LogicSegment::LogicSegment(shared_ptr<Logic> logic, uint64_t samplerate,
49                                 const uint64_t expected_num_samples) :
50         Segment(samplerate, logic->unit_size()),
51         last_append_sample_(0)
52 {
53         set_capacity(expected_num_samples);
54
55         lock_guard<recursive_mutex> lock(mutex_);
56         memset(mip_map_, 0, sizeof(mip_map_));
57         append_payload(logic);
58 }
59
60 LogicSegment::~LogicSegment()
61 {
62         lock_guard<recursive_mutex> lock(mutex_);
63         for (MipMapLevel &l : mip_map_)
64                 free(l.data);
65 }
66
67 uint64_t LogicSegment::unpack_sample(const uint8_t *ptr) const
68 {
69 #ifdef HAVE_UNALIGNED_LITTLE_ENDIAN_ACCESS
70         return *(uint64_t*)ptr;
71 #else
72         uint64_t value = 0;
73         switch (unit_size_) {
74         default:
75                 value |= ((uint64_t)ptr[7]) << 56;
76                 /* FALLTHRU */
77         case 7:
78                 value |= ((uint64_t)ptr[6]) << 48;
79                 /* FALLTHRU */
80         case 6:
81                 value |= ((uint64_t)ptr[5]) << 40;
82                 /* FALLTHRU */
83         case 5:
84                 value |= ((uint64_t)ptr[4]) << 32;
85                 /* FALLTHRU */
86         case 4:
87                 value |= ((uint32_t)ptr[3]) << 24;
88                 /* FALLTHRU */
89         case 3:
90                 value |= ((uint32_t)ptr[2]) << 16;
91                 /* FALLTHRU */
92         case 2:
93                 value |= ptr[1] << 8;
94                 /* FALLTHRU */
95         case 1:
96                 value |= ptr[0];
97                 /* FALLTHRU */
98         case 0:
99                 break;
100         }
101         return value;
102 #endif
103 }
104
105 void LogicSegment::pack_sample(uint8_t *ptr, uint64_t value)
106 {
107 #ifdef HAVE_UNALIGNED_LITTLE_ENDIAN_ACCESS
108         *(uint64_t*)ptr = value;
109 #else
110         switch (unit_size_) {
111         default:
112                 ptr[7] = value >> 56;
113                 /* FALLTHRU */
114         case 7:
115                 ptr[6] = value >> 48;
116                 /* FALLTHRU */
117         case 6:
118                 ptr[5] = value >> 40;
119                 /* FALLTHRU */
120         case 5:
121                 ptr[4] = value >> 32;
122                 /* FALLTHRU */
123         case 4:
124                 ptr[3] = value >> 24;
125                 /* FALLTHRU */
126         case 3:
127                 ptr[2] = value >> 16;
128                 /* FALLTHRU */
129         case 2:
130                 ptr[1] = value >> 8;
131                 /* FALLTHRU */
132         case 1:
133                 ptr[0] = value;
134                 /* FALLTHRU */
135         case 0:
136                 break;
137         }
138 #endif
139 }
140
141 void LogicSegment::append_payload(shared_ptr<Logic> logic)
142 {
143         assert(unit_size_ == logic->unit_size());
144         assert((logic->data_length() % unit_size_) == 0);
145
146         lock_guard<recursive_mutex> lock(mutex_);
147
148         append_data(logic->data_pointer(),
149                 logic->data_length() / unit_size_);
150
151         // Generate the first mip-map from the data
152         append_payload_to_mipmap();
153 }
154
155 const uint8_t* LogicSegment::get_samples(int64_t start_sample,
156         int64_t end_sample) const
157 {
158         assert(start_sample >= 0);
159         assert(start_sample <= (int64_t)sample_count_);
160         assert(end_sample >= 0);
161         assert(end_sample <= (int64_t)sample_count_);
162         assert(start_sample <= end_sample);
163
164         lock_guard<recursive_mutex> lock(mutex_);
165
166         uint8_t* data = new uint8_t[end_sample - start_sample];
167         const size_t size = (end_sample - start_sample) * unit_size_;
168         memcpy(data, (uint8_t*)data_.data() + start_sample * unit_size_, size);
169         return data;
170 }
171
172 void LogicSegment::reallocate_mipmap_level(MipMapLevel &m)
173 {
174         const uint64_t new_data_length = ((m.length + MipMapDataUnit - 1) /
175                 MipMapDataUnit) * MipMapDataUnit;
176         if (new_data_length > m.data_length) {
177                 m.data_length = new_data_length;
178
179                 // Padding is added to allow for the uint64_t write word
180                 m.data = realloc(m.data, new_data_length * unit_size_ +
181                         sizeof(uint64_t));
182         }
183 }
184
185 void LogicSegment::append_payload_to_mipmap()
186 {
187         MipMapLevel &m0 = mip_map_[0];
188         uint64_t prev_length;
189         const uint8_t *src_ptr;
190         uint8_t *dest_ptr;
191         uint64_t accumulator;
192         unsigned int diff_counter;
193
194         // Expand the data buffer to fit the new samples
195         prev_length = m0.length;
196         m0.length = sample_count_ / MipMapScaleFactor;
197
198         // Break off if there are no new samples to compute
199         if (m0.length == prev_length)
200                 return;
201
202         reallocate_mipmap_level(m0);
203
204         dest_ptr = (uint8_t*)m0.data + prev_length * unit_size_;
205
206         // Iterate through the samples to populate the first level mipmap
207         const uint8_t *const end_src_ptr = (uint8_t*)data_.data() +
208                 m0.length * unit_size_ * MipMapScaleFactor;
209         for (src_ptr = (uint8_t*)data_.data() +
210                         prev_length * unit_size_ * MipMapScaleFactor;
211                         src_ptr < end_src_ptr;) {
212                 // Accumulate transitions which have occurred in this sample
213                 accumulator = 0;
214                 diff_counter = MipMapScaleFactor;
215                 while (diff_counter-- > 0) {
216                         const uint64_t sample = unpack_sample(src_ptr);
217                         accumulator |= last_append_sample_ ^ sample;
218                         last_append_sample_ = sample;
219                         src_ptr += unit_size_;
220                 }
221
222                 pack_sample(dest_ptr, accumulator);
223                 dest_ptr += unit_size_;
224         }
225
226         // Compute higher level mipmaps
227         for (unsigned int level = 1; level < ScaleStepCount; level++) {
228                 MipMapLevel &m = mip_map_[level];
229                 const MipMapLevel &ml = mip_map_[level-1];
230
231                 // Expand the data buffer to fit the new samples
232                 prev_length = m.length;
233                 m.length = ml.length / MipMapScaleFactor;
234
235                 // Break off if there are no more samples to computed
236                 if (m.length == prev_length)
237                         break;
238
239                 reallocate_mipmap_level(m);
240
241                 // Subsample the level lower level
242                 src_ptr = (uint8_t*)ml.data +
243                         unit_size_ * prev_length * MipMapScaleFactor;
244                 const uint8_t *const end_dest_ptr =
245                         (uint8_t*)m.data + unit_size_ * m.length;
246                 for (dest_ptr = (uint8_t*)m.data +
247                                 unit_size_ * prev_length;
248                                 dest_ptr < end_dest_ptr;
249                                 dest_ptr += unit_size_) {
250                         accumulator = 0;
251                         diff_counter = MipMapScaleFactor;
252                         while (diff_counter-- > 0) {
253                                 accumulator |= unpack_sample(src_ptr);
254                                 src_ptr += unit_size_;
255                         }
256
257                         pack_sample(dest_ptr, accumulator);
258                 }
259         }
260 }
261
262 uint64_t LogicSegment::get_sample(uint64_t index) const
263 {
264         assert(index < sample_count_);
265
266         return unpack_sample((uint8_t*)data_.data() + index * unit_size_);
267 }
268
269 void LogicSegment::get_subsampled_edges(
270         std::vector<EdgePair> &edges,
271         uint64_t start, uint64_t end,
272         float min_length, int sig_index)
273 {
274         uint64_t index = start;
275         unsigned int level;
276         bool last_sample;
277         bool fast_forward;
278
279         assert(end <= get_sample_count());
280         assert(start <= end);
281         assert(min_length > 0);
282         assert(sig_index >= 0);
283         assert(sig_index < 64);
284
285         lock_guard<recursive_mutex> lock(mutex_);
286
287         const uint64_t block_length = (uint64_t)max(min_length, 1.0f);
288         const unsigned int min_level = max((int)floorf(logf(min_length) /
289                 LogMipMapScaleFactor) - 1, 0);
290         const uint64_t sig_mask = 1ULL << sig_index;
291
292         // Store the initial state
293         last_sample = (get_sample(start) & sig_mask) != 0;
294         edges.push_back(pair<int64_t, bool>(index++, last_sample));
295
296         while (index + block_length <= end) {
297                 //----- Continue to search -----//
298                 level = min_level;
299
300                 // We cannot fast-forward if there is no mip-map data at
301                 // at the minimum level.
302                 fast_forward = (mip_map_[level].data != nullptr);
303
304                 if (min_length < MipMapScaleFactor) {
305                         // Search individual samples up to the beginning of
306                         // the next first level mip map block
307                         const uint64_t final_index = min(end,
308                                 pow2_ceil(index, MipMapScalePower));
309
310                         for (; index < final_index &&
311                                         (index & ~((uint64_t)(~0) << MipMapScalePower)) != 0;
312                                         index++) {
313                                 const bool sample =
314                                         (get_sample(index) & sig_mask) != 0;
315
316                                 // If there was a change we cannot fast forward
317                                 if (sample != last_sample) {
318                                         fast_forward = false;
319                                         break;
320                                 }
321                         }
322                 } else {
323                         // If resolution is less than a mip map block,
324                         // round up to the beginning of the mip-map block
325                         // for this level of detail
326                         const int min_level_scale_power =
327                                 (level + 1) * MipMapScalePower;
328                         index = pow2_ceil(index, min_level_scale_power);
329                         if (index >= end)
330                                 break;
331
332                         // We can fast forward only if there was no change
333                         const bool sample =
334                                 (get_sample(index) & sig_mask) != 0;
335                         if (last_sample != sample)
336                                 fast_forward = false;
337                 }
338
339                 if (fast_forward) {
340
341                         // Fast forward: This involves zooming out to higher
342                         // levels of the mip map searching for changes, then
343                         // zooming in on them to find the point where the edge
344                         // begins.
345
346                         // Slide right and zoom out at the beginnings of mip-map
347                         // blocks until we encounter a change
348                         while (1) {
349                                 const int level_scale_power =
350                                         (level + 1) * MipMapScalePower;
351                                 const uint64_t offset =
352                                         index >> level_scale_power;
353
354                                 // Check if we reached the last block at this
355                                 // level, or if there was a change in this block
356                                 if (offset >= mip_map_[level].length ||
357                                         (get_subsample(level, offset) &
358                                                 sig_mask))
359                                         break;
360
361                                 if ((offset & ~((uint64_t)(~0) << MipMapScalePower)) == 0) {
362                                         // If we are now at the beginning of a
363                                         // higher level mip-map block ascend one
364                                         // level
365                                         if (level + 1 >= ScaleStepCount ||
366                                                 !mip_map_[level + 1].data)
367                                                 break;
368
369                                         level++;
370                                 } else {
371                                         // Slide right to the beginning of the
372                                         // next mip map block
373                                         index = pow2_ceil(index + 1,
374                                                 level_scale_power);
375                                 }
376                         }
377
378                         // Zoom in, and slide right until we encounter a change,
379                         // and repeat until we reach min_level
380                         while (1) {
381                                 assert(mip_map_[level].data);
382
383                                 const int level_scale_power =
384                                         (level + 1) * MipMapScalePower;
385                                 const uint64_t offset =
386                                         index >> level_scale_power;
387
388                                 // Check if we reached the last block at this
389                                 // level, or if there was a change in this block
390                                 if (offset >= mip_map_[level].length ||
391                                                 (get_subsample(level, offset) &
392                                                 sig_mask)) {
393                                         // Zoom in unless we reached the minimum
394                                         // zoom
395                                         if (level == min_level)
396                                                 break;
397
398                                         level--;
399                                 } else {
400                                         // Slide right to the beginning of the
401                                         // next mip map block
402                                         index = pow2_ceil(index + 1,
403                                                 level_scale_power);
404                                 }
405                         }
406
407                         // If individual samples within the limit of resolution,
408                         // do a linear search for the next transition within the
409                         // block
410                         if (min_length < MipMapScaleFactor) {
411                                 for (; index < end; index++) {
412                                         const bool sample = (get_sample(index) &
413                                                 sig_mask) != 0;
414                                         if (sample != last_sample)
415                                                 break;
416                                 }
417                         }
418                 }
419
420                 //----- Store the edge -----//
421
422                 // Take the last sample of the quanization block
423                 const int64_t final_index = index + block_length;
424                 if (index + block_length > end)
425                         break;
426
427                 // Store the final state
428                 const bool final_sample =
429                         (get_sample(final_index - 1) & sig_mask) != 0;
430                 edges.push_back(pair<int64_t, bool>(index, final_sample));
431
432                 index = final_index;
433                 last_sample = final_sample;
434         }
435
436         // Add the final state
437         const bool end_sample = get_sample(end) & sig_mask;
438         if (last_sample != end_sample)
439                 edges.push_back(pair<int64_t, bool>(end, end_sample));
440         edges.push_back(pair<int64_t, bool>(end + 1, end_sample));
441 }
442
443 uint64_t LogicSegment::get_subsample(int level, uint64_t offset) const
444 {
445         assert(level >= 0);
446         assert(mip_map_[level].data);
447         return unpack_sample((uint8_t*)mip_map_[level].data +
448                 unit_size_ * offset);
449 }
450
451 uint64_t LogicSegment::pow2_ceil(uint64_t x, unsigned int power)
452 {
453         const uint64_t p = 1 << power;
454         return (x + p - 1) / p * p;
455 }
456
457 } // namespace data
458 } // namespace pv