2 * This file is part of the PulseView project.
4 * Copyright (C) 2012 Joel Holdsworth <joel@airwebreathe.org.uk>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
28 #include "logicsegment.hpp"
30 #include <libsigrokcxx/libsigrokcxx.hpp>
32 using std::lock_guard;
33 using std::recursive_mutex;
36 using std::shared_ptr;
44 const int LogicSegment::MipMapScalePower = 4;
45 const int LogicSegment::MipMapScaleFactor = 1 << MipMapScalePower;
46 const float LogicSegment::LogMipMapScaleFactor = logf(MipMapScaleFactor);
47 const uint64_t LogicSegment::MipMapDataUnit = 64 * 1024; // bytes
49 LogicSegment::LogicSegment(pv::data::Logic& owner, unsigned int unit_size,
50 uint64_t samplerate) :
51 Segment(samplerate, unit_size),
53 last_append_sample_(0)
55 memset(mip_map_, 0, sizeof(mip_map_));
58 LogicSegment::~LogicSegment()
60 lock_guard<recursive_mutex> lock(mutex_);
61 for (MipMapLevel &l : mip_map_)
65 uint64_t LogicSegment::unpack_sample(const uint8_t *ptr) const
67 #ifdef HAVE_UNALIGNED_LITTLE_ENDIAN_ACCESS
68 return *(uint64_t*)ptr;
73 value |= ((uint64_t)ptr[7]) << 56;
76 value |= ((uint64_t)ptr[6]) << 48;
79 value |= ((uint64_t)ptr[5]) << 40;
82 value |= ((uint64_t)ptr[4]) << 32;
85 value |= ((uint32_t)ptr[3]) << 24;
88 value |= ((uint32_t)ptr[2]) << 16;
103 void LogicSegment::pack_sample(uint8_t *ptr, uint64_t value)
105 #ifdef HAVE_UNALIGNED_LITTLE_ENDIAN_ACCESS
106 *(uint64_t*)ptr = value;
108 switch (unit_size_) {
110 ptr[7] = value >> 56;
113 ptr[6] = value >> 48;
116 ptr[5] = value >> 40;
119 ptr[4] = value >> 32;
122 ptr[3] = value >> 24;
125 ptr[2] = value >> 16;
139 void LogicSegment::append_payload(shared_ptr<sigrok::Logic> logic)
141 assert(unit_size_ == logic->unit_size());
142 assert((logic->data_length() % unit_size_) == 0);
144 append_payload(logic->data_pointer(), logic->data_length());
147 void LogicSegment::append_payload(void *data, uint64_t data_size)
149 assert((data_size % unit_size_) == 0);
151 lock_guard<recursive_mutex> lock(mutex_);
153 uint64_t prev_sample_count = sample_count_;
154 uint64_t sample_count = data_size / unit_size_;
156 append_samples(data, sample_count);
158 // Generate the first mip-map from the data
159 append_payload_to_mipmap();
161 if (sample_count > 1)
162 owner_.notify_samples_added(this, prev_sample_count + 1,
163 prev_sample_count + 1 + sample_count);
165 owner_.notify_samples_added(this, prev_sample_count + 1,
166 prev_sample_count + 1);
169 const uint8_t* LogicSegment::get_samples(int64_t start_sample,
170 int64_t end_sample) const
172 assert(start_sample >= 0);
173 assert(start_sample <= (int64_t)sample_count_);
174 assert(end_sample >= 0);
175 assert(end_sample <= (int64_t)sample_count_);
176 assert(start_sample <= end_sample);
178 lock_guard<recursive_mutex> lock(mutex_);
180 return get_raw_samples(start_sample, (end_sample - start_sample));
183 SegmentLogicDataIterator* LogicSegment::begin_sample_iteration(uint64_t start)
185 return (SegmentLogicDataIterator*)begin_raw_sample_iteration(start);
188 void LogicSegment::continue_sample_iteration(SegmentLogicDataIterator* it, uint64_t increase)
190 Segment::continue_raw_sample_iteration((SegmentRawDataIterator*)it, increase);
193 void LogicSegment::end_sample_iteration(SegmentLogicDataIterator* it)
195 Segment::end_raw_sample_iteration((SegmentRawDataIterator*)it);
198 void LogicSegment::reallocate_mipmap_level(MipMapLevel &m)
200 lock_guard<recursive_mutex> lock(mutex_);
202 const uint64_t new_data_length = ((m.length + MipMapDataUnit - 1) /
203 MipMapDataUnit) * MipMapDataUnit;
205 if (new_data_length > m.data_length) {
206 m.data_length = new_data_length;
208 // Padding is added to allow for the uint64_t write word
209 m.data = realloc(m.data, new_data_length * unit_size_ +
214 void LogicSegment::append_payload_to_mipmap()
216 MipMapLevel &m0 = mip_map_[0];
217 uint64_t prev_length;
219 SegmentRawDataIterator* it;
220 uint64_t accumulator;
221 unsigned int diff_counter;
223 // Expand the data buffer to fit the new samples
224 prev_length = m0.length;
225 m0.length = sample_count_ / MipMapScaleFactor;
227 // Break off if there are no new samples to compute
228 if (m0.length == prev_length)
231 reallocate_mipmap_level(m0);
233 dest_ptr = (uint8_t*)m0.data + prev_length * unit_size_;
235 // Iterate through the samples to populate the first level mipmap
236 uint64_t start_sample = prev_length * MipMapScaleFactor;
237 uint64_t end_sample = m0.length * MipMapScaleFactor;
239 it = begin_raw_sample_iteration(start_sample);
240 for (uint64_t i = start_sample; i < end_sample;) {
241 // Accumulate transitions which have occurred in this sample
243 diff_counter = MipMapScaleFactor;
244 while (diff_counter-- > 0) {
245 const uint64_t sample = unpack_sample(it->value);
246 accumulator |= last_append_sample_ ^ sample;
247 last_append_sample_ = sample;
248 continue_raw_sample_iteration(it, 1);
252 pack_sample(dest_ptr, accumulator);
253 dest_ptr += unit_size_;
255 end_raw_sample_iteration(it);
257 // Compute higher level mipmaps
258 for (unsigned int level = 1; level < ScaleStepCount; level++) {
259 MipMapLevel &m = mip_map_[level];
260 const MipMapLevel &ml = mip_map_[level - 1];
262 // Expand the data buffer to fit the new samples
263 prev_length = m.length;
264 m.length = ml.length / MipMapScaleFactor;
266 // Break off if there are no more samples to be computed
267 if (m.length == prev_length)
270 reallocate_mipmap_level(m);
272 // Subsample the lower level
273 const uint8_t* src_ptr = (uint8_t*)ml.data +
274 unit_size_ * prev_length * MipMapScaleFactor;
275 const uint8_t *const end_dest_ptr =
276 (uint8_t*)m.data + unit_size_ * m.length;
278 for (dest_ptr = (uint8_t*)m.data +
279 unit_size_ * prev_length;
280 dest_ptr < end_dest_ptr;
281 dest_ptr += unit_size_) {
283 diff_counter = MipMapScaleFactor;
284 while (diff_counter-- > 0) {
285 accumulator |= unpack_sample(src_ptr);
286 src_ptr += unit_size_;
289 pack_sample(dest_ptr, accumulator);
294 uint64_t LogicSegment::get_unpacked_sample(uint64_t index) const
296 assert(index < sample_count_);
298 const uint8_t* data = get_raw_samples(index, 1);
299 uint64_t sample = unpack_sample(data);
305 void LogicSegment::get_subsampled_edges(
306 vector<EdgePair> &edges,
307 uint64_t start, uint64_t end,
308 float min_length, int sig_index)
310 uint64_t index = start;
315 assert(end <= get_sample_count());
316 assert(start <= end);
317 assert(min_length > 0);
318 assert(sig_index >= 0);
319 assert(sig_index < 64);
321 lock_guard<recursive_mutex> lock(mutex_);
323 const uint64_t block_length = (uint64_t)max(min_length, 1.0f);
324 const unsigned int min_level = max((int)floorf(logf(min_length) /
325 LogMipMapScaleFactor) - 1, 0);
326 const uint64_t sig_mask = 1ULL << sig_index;
328 // Store the initial state
329 last_sample = (get_unpacked_sample(start) & sig_mask) != 0;
330 edges.emplace_back(index++, last_sample);
332 while (index + block_length <= end) {
333 //----- Continue to search -----//
336 // We cannot fast-forward if there is no mip-map data at
337 // at the minimum level.
338 fast_forward = (mip_map_[level].data != nullptr);
340 if (min_length < MipMapScaleFactor) {
341 // Search individual samples up to the beginning of
342 // the next first level mip map block
343 const uint64_t final_index = min(end,
344 pow2_ceil(index, MipMapScalePower));
346 for (; index < final_index &&
347 (index & ~((uint64_t)(~0) << MipMapScalePower)) != 0;
350 (get_unpacked_sample(index) & sig_mask) != 0;
352 // If there was a change we cannot fast forward
353 if (sample != last_sample) {
354 fast_forward = false;
359 // If resolution is less than a mip map block,
360 // round up to the beginning of the mip-map block
361 // for this level of detail
362 const int min_level_scale_power =
363 (level + 1) * MipMapScalePower;
364 index = pow2_ceil(index, min_level_scale_power);
368 // We can fast forward only if there was no change
370 (get_unpacked_sample(index) & sig_mask) != 0;
371 if (last_sample != sample)
372 fast_forward = false;
377 // Fast forward: This involves zooming out to higher
378 // levels of the mip map searching for changes, then
379 // zooming in on them to find the point where the edge
382 // Slide right and zoom out at the beginnings of mip-map
383 // blocks until we encounter a change
385 const int level_scale_power =
386 (level + 1) * MipMapScalePower;
387 const uint64_t offset =
388 index >> level_scale_power;
390 // Check if we reached the last block at this
391 // level, or if there was a change in this block
392 if (offset >= mip_map_[level].length ||
393 (get_subsample(level, offset) &
397 if ((offset & ~((uint64_t)(~0) << MipMapScalePower)) == 0) {
398 // If we are now at the beginning of a
399 // higher level mip-map block ascend one
401 if (level + 1 >= ScaleStepCount ||
402 !mip_map_[level + 1].data)
407 // Slide right to the beginning of the
408 // next mip map block
409 index = pow2_ceil(index + 1,
414 // Zoom in, and slide right until we encounter a change,
415 // and repeat until we reach min_level
417 assert(mip_map_[level].data);
419 const int level_scale_power =
420 (level + 1) * MipMapScalePower;
421 const uint64_t offset =
422 index >> level_scale_power;
424 // Check if we reached the last block at this
425 // level, or if there was a change in this block
426 if (offset >= mip_map_[level].length ||
427 (get_subsample(level, offset) &
429 // Zoom in unless we reached the minimum
431 if (level == min_level)
436 // Slide right to the beginning of the
437 // next mip map block
438 index = pow2_ceil(index + 1,
443 // If individual samples within the limit of resolution,
444 // do a linear search for the next transition within the
446 if (min_length < MipMapScaleFactor) {
447 for (; index < end; index++) {
448 const bool sample = (get_unpacked_sample(index) &
450 if (sample != last_sample)
456 //----- Store the edge -----//
458 // Take the last sample of the quanization block
459 const int64_t final_index = index + block_length;
460 if (index + block_length > end)
463 // Store the final state
464 const bool final_sample =
465 (get_unpacked_sample(final_index - 1) & sig_mask) != 0;
466 edges.emplace_back(index, final_sample);
469 last_sample = final_sample;
472 // Add the final state
473 const bool end_sample = get_unpacked_sample(end) & sig_mask;
474 if (last_sample != end_sample)
475 edges.emplace_back(end, end_sample);
476 edges.emplace_back(end + 1, end_sample);
479 uint64_t LogicSegment::get_subsample(int level, uint64_t offset) const
482 assert(mip_map_[level].data);
483 return unpack_sample((uint8_t*)mip_map_[level].data +
484 unit_size_ * offset);
487 uint64_t LogicSegment::pow2_ceil(uint64_t x, unsigned int power)
489 const uint64_t p = 1 << power;
490 return (x + p - 1) / p * p;