2 * This file is part of the PulseView project.
4 * Copyright (C) 2012 Joel Holdsworth <joel@airwebreathe.org.uk>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
31 #include "analogsegment.hpp"
33 using std::lock_guard;
34 using std::recursive_mutex;
37 using std::max_element;
39 using std::min_element;
41 using std::unique_ptr;
46 const int AnalogSegment::EnvelopeScalePower = 4;
47 const int AnalogSegment::EnvelopeScaleFactor = 1 << EnvelopeScalePower;
48 const float AnalogSegment::LogEnvelopeScaleFactor = logf(EnvelopeScaleFactor);
49 const uint64_t AnalogSegment::EnvelopeDataUnit = 64 * 1024; // bytes
51 AnalogSegment::AnalogSegment(Analog& owner, uint32_t segment_id, uint64_t samplerate) :
52 Segment(segment_id, samplerate, sizeof(float)),
57 lock_guard<recursive_mutex> lock(mutex_);
58 memset(envelope_levels_, 0, sizeof(envelope_levels_));
61 AnalogSegment::~AnalogSegment()
63 lock_guard<recursive_mutex> lock(mutex_);
64 for (Envelope &e : envelope_levels_)
68 void AnalogSegment::append_interleaved_samples(const float *data,
69 size_t sample_count, size_t stride)
71 assert(unit_size_ == sizeof(float));
73 lock_guard<recursive_mutex> lock(mutex_);
75 uint64_t prev_sample_count = sample_count_;
77 // Deinterleave the samples and add them
78 unique_ptr<float[]> deint_data(new float[sample_count]);
79 float *deint_data_ptr = deint_data.get();
80 for (uint32_t i = 0; i < sample_count; i++) {
81 *deint_data_ptr = (float)(*data);
86 append_samples(deint_data.get(), sample_count);
88 // Generate the first mip-map from the data
89 append_payload_to_envelope_levels();
92 owner_.notify_samples_added(this, prev_sample_count + 1,
93 prev_sample_count + 1 + sample_count);
95 owner_.notify_samples_added(this, prev_sample_count + 1,
96 prev_sample_count + 1);
99 void AnalogSegment::get_samples(int64_t start_sample, int64_t end_sample,
102 assert(start_sample >= 0);
103 assert(start_sample < (int64_t)sample_count_);
104 assert(end_sample >= 0);
105 assert(end_sample <= (int64_t)sample_count_);
106 assert(start_sample <= end_sample);
107 assert(dest != nullptr);
109 lock_guard<recursive_mutex> lock(mutex_);
111 get_raw_samples(start_sample, (end_sample - start_sample), (uint8_t*)dest);
114 const pair<float, float> AnalogSegment::get_min_max() const
116 return make_pair(min_value_, max_value_);
119 float* AnalogSegment::get_iterator_value_ptr(SegmentDataIterator* it)
121 assert(it->sample_index <= (sample_count_ - 1));
123 return (float*)(it->chunk + it->chunk_offs);
126 void AnalogSegment::get_envelope_section(EnvelopeSection &s,
127 uint64_t start, uint64_t end, float min_length) const
129 assert(end <= get_sample_count());
130 assert(start <= end);
131 assert(min_length > 0);
133 lock_guard<recursive_mutex> lock(mutex_);
135 const unsigned int min_level = max((int)floorf(logf(min_length) /
136 LogEnvelopeScaleFactor) - 1, 0);
137 const unsigned int scale_power = (min_level + 1) *
139 start >>= scale_power;
142 s.start = start << scale_power;
143 s.scale = 1 << scale_power;
144 s.length = end - start;
145 s.samples = new EnvelopeSample[s.length];
146 memcpy(s.samples, envelope_levels_[min_level].samples + start,
147 s.length * sizeof(EnvelopeSample));
150 void AnalogSegment::reallocate_envelope(Envelope &e)
152 const uint64_t new_data_length = ((e.length + EnvelopeDataUnit - 1) /
153 EnvelopeDataUnit) * EnvelopeDataUnit;
154 if (new_data_length > e.data_length) {
155 e.data_length = new_data_length;
156 e.samples = (EnvelopeSample*)realloc(e.samples,
157 new_data_length * sizeof(EnvelopeSample));
161 void AnalogSegment::append_payload_to_envelope_levels()
163 Envelope &e0 = envelope_levels_[0];
164 uint64_t prev_length;
165 EnvelopeSample *dest_ptr;
166 SegmentDataIterator* it;
168 // Expand the data buffer to fit the new samples
169 prev_length = e0.length;
170 e0.length = sample_count_ / EnvelopeScaleFactor;
172 // Calculate min/max values in case we have too few samples for an envelope
173 const float old_min_value = min_value_, old_max_value = max_value_;
174 if (sample_count_ < EnvelopeScaleFactor) {
175 it = begin_sample_iteration(0);
176 for (uint64_t i = 0; i < sample_count_; i++) {
177 const float sample = *get_iterator_value_ptr(it);
178 if (sample < min_value_)
180 if (sample > max_value_)
182 continue_sample_iteration(it, 1);
184 end_sample_iteration(it);
187 // Break off if there are no new samples to compute
188 if (e0.length == prev_length)
191 reallocate_envelope(e0);
193 dest_ptr = e0.samples + prev_length;
195 // Iterate through the samples to populate the first level mipmap
196 uint64_t start_sample = prev_length * EnvelopeScaleFactor;
197 uint64_t end_sample = e0.length * EnvelopeScaleFactor;
199 it = begin_sample_iteration(start_sample);
200 for (uint64_t i = start_sample; i < end_sample; i += EnvelopeScaleFactor) {
201 const float* samples = get_iterator_value_ptr(it);
203 const EnvelopeSample sub_sample = {
204 *min_element(samples, samples + EnvelopeScaleFactor),
205 *max_element(samples, samples + EnvelopeScaleFactor),
208 if (sub_sample.min < min_value_)
209 min_value_ = sub_sample.min;
210 if (sub_sample.max > max_value_)
211 max_value_ = sub_sample.max;
213 continue_sample_iteration(it, EnvelopeScaleFactor);
214 *dest_ptr++ = sub_sample;
216 end_sample_iteration(it);
218 // Compute higher level mipmaps
219 for (unsigned int level = 1; level < ScaleStepCount; level++) {
220 Envelope &e = envelope_levels_[level];
221 const Envelope &el = envelope_levels_[level - 1];
223 // Expand the data buffer to fit the new samples
224 prev_length = e.length;
225 e.length = el.length / EnvelopeScaleFactor;
227 // Break off if there are no more samples to be computed
228 if (e.length == prev_length)
231 reallocate_envelope(e);
233 // Subsample the lower level
234 const EnvelopeSample *src_ptr =
235 el.samples + prev_length * EnvelopeScaleFactor;
236 const EnvelopeSample *const end_dest_ptr = e.samples + e.length;
238 for (dest_ptr = e.samples + prev_length;
239 dest_ptr < end_dest_ptr; dest_ptr++) {
240 const EnvelopeSample *const end_src_ptr =
241 src_ptr + EnvelopeScaleFactor;
243 EnvelopeSample sub_sample = *src_ptr++;
244 while (src_ptr < end_src_ptr) {
245 sub_sample.min = min(sub_sample.min, src_ptr->min);;
246 sub_sample.max = max(sub_sample.max, src_ptr->max);
250 *dest_ptr = sub_sample;
254 // Notify if the min or max value changed
255 if ((old_min_value != min_value_) || (old_max_value != max_value_))
256 owner_.min_max_changed(min_value_, max_value_);